Lecture 4 MATH 127 (Maj Sultana)

MATH 127 

Vector Analysis


Triple Product


1.  \(\vec{A} .(\vec{B} \times \vec{C} )\)  

2.  \(\vec{A} \times (\vec{B} \times \vec{C} )\)  

3.  \((\vec{A} .\vec{B} ). \vec{C} \)  


    • Projection

i) Scaler Projection:  $\displaystyle \vec{b} \frac{\vec{a} }{|\vec{a}| } $  

ii) Vector Projection:  $\displaystyle \frac{\vec{a} .\vec{b} }{|\vec{a}|^2} \vec{a} $  

    The scaler projection of  \(\vec{b} \) and  \(\vec{a} \) is the length of the AB (shown in the figure). The vector projection of  \(\vec{b} \) onto  \(\vec{a} \) is the vector with this length at the point A point in the same direction as  \(\vec{a} \) .

    This quantity is also called the component of  \(\vec{b} \) in the  \(\vec{a} \) direction. And, the vector projection is merely the unit vector  $ \displaystyle \frac{\vec{a} }{|\vec{a} } $ times the scalar projection of  \(\vec{b} \) onto  \(\vec{a} \) .

\(\therefore\) The scalar projection of  \(\vec{b} \) onto  \(\vec{a} \) is proj  $ \displaystyle \frac{\vec{b} }{\vec{a}} = \vec{b} .\frac{\vec{a}}{\vec{a}} $  

and the vector projection of    \(\vec{b} \) onto  \(\vec{a} \) is proj  $ \displaystyle \frac{\vec{b} }{\vec{a}} = \frac{\vec{a} .\vec{b} }{|\vec{a} |^2} \vec{a} $ .



    ♦ Direction Cosines: 

  $$\cos \alpha = \frac{x}{|\vec{r}|} = \frac{x}{\sqrt{ x^2 + y^2 + z^2}}$$  

  $$\cos \beta = \frac{y}{|\vec{r}|} = \frac{y}{\sqrt{x^2 + y^2 + z^2}} $$  

  $$\cos \gamma = \frac{z}{|\vec{r}|} = \frac{z }{\sqrt{x^2 + y^2 + z^2} }$$  

Theorem:  \(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)  


    Example: Find direction cosines of a vector represented by  \( \vec{PQ }\) where  \(P(2,- 3, 5) \textrm{ and } Q(1,0,- 1 )\) are two point.

Solution:  \begin{align*} \vec{PQ} & = (1 - 2) \hat{i} + (0 + 3) \hat{j} + (- 1 - 5) \hat{k} \\ & = - \hat{i} + 3 \hat{j} - 5 \hat{k} \\ \textrm{Now,} & \\ \alpha & = \cos^{-1} \left( \frac{- 1}{\sqrt[]{1^2 + 3^2 + 6^2}}\right) \\ & = \cos^{-1} \left(- \frac{1}{\sqrt{46}}\right) ~= 98.47^\circ \\ \beta & = \cos^{-1} \left(\frac{3}{\sqrt{1^2 + 3^2 + 6^2}}\right) \\ & = \cos^{-1} \frac{3}{\sqrt{46}} ~= 63.74^\circ \\ \theta & = \cos^{-1} \left(\frac{- 6}{\sqrt[]{1^2 + 3^2 + 6^2}}\right) \\ & = \cos^{-1} \frac{6}{\sqrt{46}} ~= 152.2^\circ \end{align*}  


 

Post a Comment

Post a Comment (0)

Previous Post Next Post