Lecture 3 [24 March, 2020] PHY 115

PHY 115 

Wave and Oscillation




    ♦ Simple Pendulum:


    ♦ Compound Pendulum: any shape rigid body...
  

    ♦ Differential Equation for Simple Harmonic Motion:

  (1) Force along the string =  \(Mg\cos \theta\)
    (2) Force perpendiculer to the string = \(Mg\sin\theta\)
The component \(Mg\cos\theta\) balance the tension.

  $$ T = Mg \cos\theta $$  
The Force active on the oscillating particle is,
  \begin{align*} F = & - Mg\cos\theta \\ \textrm{when,} & \theta \rightarrow 0, ~\textrm{ the}~ \sin\theta = \theta \\ F = & - Mg\theta \tag{1}\label{eq:1} \end{align*}   
We know,  \(F = ma \tag{2}\label{eq:2}\)  
The linear displacement,  \begin{align*} y = & l\theta \\ \implies \frac{dy}{dt} = & \ \frac{d\theta}{dt} \\ \implies \frac{d^2 y}{d t^2} = & a = \ \frac{d^2 \theta}{d t^2} \tag{3}\label{eq:3} \end{align*}  
Comparing equation (1) and (2),
  $$ F = Ml \frac{d^2 \theta}{d t^2} $$  
Now using equation (1) 
  \begin{align*} & Ml \frac{d^2 \theta}{d t^2} = - Mg\theta \\ \implies & \frac{d^2 \theta}{d t ^2} + \frac{g}{l}\theta = 0 \end{align*}  
comparing with differential equation of SHM,
  \begin{align*} & \omega^2 = \frac{g}{l} \\ \implies & \left(\frac{2\pi}{T } \right)^2 = \frac{g}{l} \\ \implies & t = 2 \pi \sqrt{\frac{l}{g}} \end{align*}  

HW: Find out T for compound pendulum.

Post a Comment

Post a Comment (0)

Previous Post Next Post