PHY 115
Wave and Oscillation
1. Horizontal oscillations of a spring:
Fig:
Restoring Force,
\(F = - kx\)
From Newton's second law,
\begin{align*}
F = & ma \\
\implies ma = & - kx \\
\therefore a = & - \frac{k}{m}x
\end{align*}
comparing with equation of SHM, \begin{align*} a = & - \omega^2 x \\ \therefore \omega^2 \frac{k}{m} = & \frac{g}{dl} ~~~\bigg|~ T = 2\pi \sqrt{\frac{m}{k}} \end{align*}
2. Vertical oscillation of a spring:
\begin{align*} k~dl = mg \\ F = & k (dl - y) - mg \\ = & k (dl - y) - k~dl \\ = & - ky \\ \therefore F = - ky \end{align*} $$ T = 2\pi \sqrt{\frac{dl}{g}} $$
♦ Parallel System:
\begin{align*}
& F_1 \ne F_2 ~~~~~~~~~~~~~~~~~ \bigg| F_1 = - k_1 y \\
& y_1 = y_2 = y ~~~~~~~~~~~\bigg|~ F_2 = - k_2 y \\
\\
\\
& ~~~~~~~~~~~~~ F = F_1 + F_2
\end{align*}
♦ Series system:
Post a Comment