Lecture 3 MATH 223 (Lt Col Tahmina Sultana)

 

 MATH 223

Lecture 03 

Laplace Transformation





      
    Example: Find  \(\mathcal{L}\{\cos at\}\)  
Solution:  We know that,  $ \displaystyle \int e^{ \alpha .t} \cos \beta t ~dt = \frac{ e^{\alpha t } (\alpha ~ \cos \beta t + \beta \sin \beta t)}{\alpha^2 + \beta^2} $  



  \begin{align*} \therefore \mathcal{L}\{\cos at\} = & ~~\\ = & \int^\infty_0 e^{- st} ~ \cos at ~dt \\ = & \left[ \frac{e^{- st}( - s \cos at + a \sin at)}{s^2 + a^2}\right]^\infty_0 \\ = & [\textrm{Do It Yourself }🙄]\\ = & \cdots \cdots~~~\\ = & \frac{s }{s^2 + a^2} \end{align*} 


    ♦ Some Important Results:  

$ \displaystyle F(t) $ $ \displaystyle \mathcal{L}\{F(t)\}= f(s) $
$ \displaystyle 1 $ $ \displaystyle \frac{1}{s}$
$ \displaystyle t $ $ \displaystyle \frac{1}{s^2}$
$ \displaystyle t^2 $ $ \displaystyle \frac{2}{s^3}$
$ \displaystyle t^2$ $ \displaystyle \frac{6}{s^4}$
$ \displaystyle t^n$ $ \displaystyle \frac{n!}{s^{n + 1}}$
$ \displaystyle e^{at}$ $ \displaystyle \frac{1}{s - a}$
$ \displaystyle \sin at $ $ \displaystyle \frac{a}{s^2 + a^2}$
$ \displaystyle \cos at$ $ \displaystyle \frac{s }{s^2 + a^2}$







Hyperbolic Function


  $$ \sinh at = \frac{ e^{at} - e^{- at}}{2} $$ $$ \cosh at = \frac{e^{at} + e^{at}}{2} $$  

    Example: Find  \(\mathcal{L}\{\sinh at\}\)   
Solution:  By the Definition of Laplace Transformation,
\begin{align*} \mathcal{L}\{\sinh at\} & = \int^\infty_0 e^{- st} \sinh at ~dt \\ & = \int^\infty_0 e^{- st} \left(\frac{e^{at} - e^{- at}}{2}\right)~dt \\ & = \frac{1}{2} \int^\infty_0 e^{- st} . e^{at} ~dt - \frac{1}{2} \int^\infty_0 e^{- st} . e^{- at} ~dt \\ & = \frac{1}{2} \mathcal{L}\{e^{at}\} - \frac{1}{2} \mathcal{L}\{e^{- at}\} \\ & = \frac{1}{s - a }- \frac{1}{2} \frac{1}{s + a} \\ & = \frac{1}{2} \frac{2a}{s^2 - a^2} \\ & = \frac{a}{s^2 - a^2} \end{align*}  



    Home Work:  \(\mathcal{L}\{\cosh at\}\)  

Post a Comment

Post a Comment (0)

Previous Post Next Post