Lecture 4 MATH 223 (Lt Col Tahmina Sultana)

 

 MATH 223

Lecture 04 

Laplace Transformation









    ♦ Some Important Results:

$ \displaystyle F(t) $ $ \displaystyle \mathcal{L}\{F(t)\}= f(s) $
$ \displaystyle t $ $ \displaystyle \frac{1}{s^2}$
$ \displaystyle t^2 $ $ \displaystyle \frac{2}{s^3}$
$ \displaystyle t^2$ $ \displaystyle \frac{6}{s^4}$
$ \displaystyle t^n$ $ \displaystyle \frac{n!}{s^{n + 1}}$
$ \displaystyle e^{at}$ $ \displaystyle \frac{1}{s - a}$
$ \displaystyle \sin at $ $ \displaystyle \frac{a}{s^2 + a^2}$
$ \displaystyle \cos at$ $ \displaystyle \frac{s }{s^2 + a^2}$
$ \displaystyle \sinh at $ $ \displaystyle \frac{a}{s^2 - a^2}$
$ \displaystyle \cosh at$ $ \displaystyle \frac{s}{s^2 - a^2}$






    ♦ Linear Properties of Laplace Transformation:
  \begin{align*} & \mathcal{L}\{F_1(t)\} = f_1 (s) = \int^\infty_0 e^{- st} . F_1(t) ~dt \\ & \mathcal{L}\{F_2(t)\} = f_2 (s) = \int^\infty_0 e^{- st} . F_2 (t) ~dt \\ \end{align*}  
Then if, \(C_1\) and \(C_2\) are any constants 
  \begin{align*} \therefore \mathcal{L}\{C_1~F_1(t) + C_2~F_2 (t) \} = C_1~f_1 (s) + C_2~f_2 (s) \end{align*}  


   • Proof:
  \begin{align*} & \mathcal{L}\{C_1 ~F_1 (t) + C_2 ~ F_2(t)\}\\ = & \int^\infty_0 e^{- st} .\{ C_1 F_1(t) + C_2 F_2 (t)\} ~dt\\ = & \int^\infty_0 e^{- st} ~ C_1 F_1(t) ~dt + \int^\infty_0 e^{- st} C_2 F_2(t) ~dt \\ = & C_1 \int^\infty_0 e^{- st} ~ F_1(t) ~dt + C_2 \int^\infty_0 F_2(t) ~dt \\ = & C_1 \mathcal{L}\{F_1(t)\} + C_2 \mathcal{L}\{F_2(t)\} \\ = & C_1 f_1(s) + C_2f_2(s) \end{align*}  






   • Example: Find \(\mathcal{L}\{\sin 4t\}\) 
Solution:   
 We know that,  $$ \mathcal{L}\{\sin at\} = \frac{a}{s^2 + a^2} $$  
  \begin{align*} \therefore & \mathcal{L}\{\sin 4t\} \\ = & \frac{4}{s^2 + 4^2} \\ = & \frac{4}{s^2 + 16 } \end{align*}  




   
    Example: Find Laplace Transform of  \(\mathcal{L}\{4e^{5t} + 6 t^2 - 3 \sin 4t + 2 \cos 2t\}\)  
Solution:  \begin{align*} & \mathcal{L}\{4e^{5t} + 6 t^2 - 3 \sin 4t + 2 \cos 2t\} \\ = & \mathcal{L}\{4 e^{5t}\} + \mathcal{L}\{6 t^3\} - \mathcal{L}\{3 \sin 4t\} + \mathcal{L}\{2 \cos 2t\} \\ = & 4 \mathcal{L}\{e^{5t}\} + 6 \mathcal{L}\{t^3\} - 3 \mathcal{L}\{\sin 4t\} + \mathcal{L}\{2 \cos 2t\} \\ = & 4 \frac{1}{s - 5} + 6 \frac{3!}{s^{3 + 1}} - 3 \frac{4}{3 + 16} + 2 \frac{s}{s^2 + 2^2} \end{align*}  





   • Example: Find Laplace Transform of  \(\mathcal{L}\{e^{3t} t^2\}\)  
Solution:  \begin{align*} & e^{3t} = e^{at} \\ & ~~ a = 3 \\ & ~~\\ & F(t) = t^2 \\ \textrm{we know,}& ~~\\ & f(s) = \mathcal{L}\{F(t)\}\\ & ~~~~~~~= \mathcal{L}\{t^2\} \\ & ~~~~~~~= \frac{2}{s^3} \\ & ~~~\\ \textrm{here, } & f(s - a) = f (s - 3) = \mathcal{L}\{e^{3t ~ t^2} \}\\ & f (s) = \frac{2}{s^3} \\ & f(s - 3 ) = \frac{2}{(s - 3)^3} \\ \therefore & \mathcal{L}\{e^{3t}~ t^2\} = \frac{2}{(s - 3)^3} \end{align*}  



   
    • Example: Find  \(\mathcal{L}\{e^{- 2t. \sin 4t}\}\)  
Solution:  \begin{align*} & e^{at } = e^{ - 2t} \\ \therefore ~ & a = - 2 \\ & ~~~ \\ & \mathcal{L}\{e^{- 2t. \sin 4t}\}= f(s + 2 ) \\ \textrm{And,} & F(t) = \sin 4t \\ & ~~\\ & f(s) = \mathcal{L}\{\sin 4t\} \\ & ~~~~~~~~~= \frac{4}{s^2 + 16} \\ & ~~~\\ \therefore & f(s + 2) = \frac{4}{(s + 2 )^2 + 16} \end{align*}                                                 



   • Home Work:  \(\mathcal{L}\{e^{4t}~ \cosh 5t\}\)  

 












Post a Comment

Post a Comment (0)

Previous Post Next Post